My R2R DAC...
(Pictures of the mmc module taken through a high resolution camera :-))
Features:
- TV remote control to control the player remotely.
- Hi quality audio output
- Maximum bit rate supported - 144 kilobytes/second.
- Stereo support
- Automatic repeat from the top after all the songs are played.
- Additional bitrate adjustment on remote ( << , default, >> ).
- Forwarding (fwd) option while playing. (seconds could be set on a macro).
(more features will be added on next update)
A brief explanation about the working:
MMC card initialization, reading, writing and interfacing are already explained on my previous post
http://vinodstanur.blogspot.com/2011/07/attempt-to-access-memory-card-mmc-using.html
, so I think no need to repeat in again. Any way, in short words, MMC/SD cards are to be initialized by proper commands and it enters to working mode (SPI mode) only if it is initialized successfully.
So, here I used a 16x2 lcd to display many things. At first, it displays error message (if any) while trying to initialize the mmc. When it is initialized successfully, it shows MMC INITIALIZED message on lcd..
Now, the next step is to check the boot sector of the MMC card (sector 0) to check if it contains a FAT16 file system. For this, we need to read the sector 0 of MMC card to a buffer. Here I used a 512 byte buffer. From the boot sector data, we could see what file system is there in the MMC card. My code is only for FAT16, so if I found it is not FAT16, then it display an error ie NOT A FAT16. If it found FAT16, then it reads few more data from the buffer and calculates sector number for the data start, fat start and root directory start. Also it detects the sectors per clusters. Each sector is 512 bytes. These four data is required for the further activities on MMC/SD card. So those are stored as global variables.
Now the next step is to get into the root directory. (MMC commands and the sector reading is covered in my previous post as linked above). Now we need to load the first sector of root directory into the 512 byte buffer. Then, each root directory entry is of 32 byte (in general for 8.3 file name format). Each entry contains details of a file or folder in the root directory. From there we can read the file name, file attribute, actual file starting address (cluster address) and many more... We are interested in the file name extension (WAV), the file attribute and the file starting cluster address. So we compare the extension with the string "WAV" and if it matches, then we return the cluster address of the wav file.
Now we could read the first cluster (a group of sectors, size depends on the size of MMC/SD). We could find the sector address from the cluster number using as equation.(u can see that on my code). Now after reading and playing all the sectors in the first cluster, (playing the data will be explained after this) then we need to find the next cluster number of the same file. A file may not be distributed on the memory as one section. Instead, it can be splitted into parts and placed here and there to utilize the free memory effectively.... (actually this happens only when there are some deleted files and we add new files to the MMC/SD). So we can't predict that the next cluster of the file will be successive numbers... But all the cluster order for each file is perfectly tracked on a linked list called the FAT...(File Allocation Table). Each cluster number have a unique position on the FAT. We already calculated the FAT starting address. From the FAT, we could get the next cluster number of the file. Since it is a linked list, the 16 bit data present on the 1st cluster number position will be the second cluster number. Now after reading the second cluster, we check which is the third cluster by checking the data on the location of second cluster position,,,This continues until we read a 0xffff from a location on FAT... This denotes the end cluster for the particular file..
We have first cluster number and we calculated the sector starting address of the particular cluster number. Now we read the data from first sector of the file and from there we could get the bitrate, sample rate, number of channel (stereo, mono) and many more.. We take the bit rate and use it to set the timer interrupt frequency... Now the timer interrupt is generated according to the bitrate and channel number. Now on each timer interrupt, an 8 bit data is introduced to the OCR register of Timer PWM module. Accordingly it generate PWM signal in background without any CPU resource. This PWM signal could be easily demodulated with an RC filter. If the capacitor value increases or resistor value decreases ,then it will affect the audio quality ie it may filter out some higher frequency components of the audio and may feel it like hearing some thing from an AM MW radio..:-)...So care must be given while choosing RC..
Now, we know, if we use a single buffer for both playing data and collecting data, then there will be a small contuinity problem while the song is played.... So, it will be really irritating if we are hearing our fav music like that... Thus, here I had implemented two special 512 bytes buffer for audio data only. This buffer is filled and played by a special technique.. ie when one buffer is playing (used inside timer interrupt) , the other buffer will be filling.,, This buffers will be exchanged alternatively... By this technique, I could obtain a pure uninterrupted high quality audio .... Thats all about the working ..............;-)
Now, decoding the TV remote is a simple process, ie using a timer interrupt, we sample the incoming signal on each 1778 us. To sample the data at mid point of the first half of the manchester code, I made a small delay of about 400ms from the time zero (ie the time when the start bit is detected)...After that the timer is activated to generate interrupt flag on each 1778us. So Now u can check my ISR(INT2_vect) code to see how RC5 is decoded. Also, check my previous code about an RC5 decoder which shows the structure of RC5 code. Other wise a simple google image search for "RC5 structure" will show the required data....
I had implemented RC5 decoding on the same Atmega32. But I think it is not a good method. Becuase, it will be inside the Timer ISR for more time while playing the file. So, most time, RC5 external interrupt will be triggered when the processor is handling the Timer interrupt. Then the external interrupt will be handled only after that and this results an invalid start bit detection inside the rc5 interrupt handler and that will be treated as an invalid RC5 signal. So if we are lucky enough, the first keypress itself will do the job, else we need to press the key for a while or retry after key release... But probably, it will work with in 1 or 2 keypress... So at present I think, the best method is to decode the RC5 outside the atmega32 and send the value via a serial interface for a better performance..
Circuit Diagram[wav player with PWM output]:
Wave structure:
The WAVE file format is a subset of Microsoft's RIFF specification for the storage of multimedia files. A RIFF file starts out with a file header followed by a sequence of data chunks. A WAVE file is often just a RIFF file with a single "WAVE" chunk which consists of two sub-chunks -- a "fmt " chunk specifying the data format and a "data" chunk containing the actual sample data.
As an example, here are the opening 72 bytes of a WAVE file with bytes shown as hexadecimal numbers:
52 49 46 46 24 08 00 00 57 41 56 45 66 6d 74 20 10 00 00 00 01 00 02 00 22 56 00 00 88 58 01 00 04 00 10 00 64 61 74 61 00 08 00 00 00 00 00 00 24 17 1e f3 3c 13 3c 14 16 f9 18 f9 34 e7 23 a6 3c f2 24 f2 11 ce 1a 0d
Source code[for WAV player with PWM output]:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | /* TV REMOTE CONTROLLED HIGH QUALITY MMC WAV PLAYER USING ATMEGA32
By Vinod S <vinodstanur@gmail.com> <http://blog.vinu.co.in>
First release Date: 25/02/2012 Last update Date: 02/03/2012 [improved maximum bitrate support to 1600kbps for stereo and 1300 for mono]
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include<avr/io.h> #define F_CPU 16450000 #include <util/delay.h> #include <avr/interrupt.h> #include <string.h>
#define SECONDS_TO_FORWARD 15 #define RS PD6 #define EN PD5 #define LCD_NIBBLE PORTC #define LINE1 cmd(0x80) #define LINE2 cmd(0xc0) #define LEFT_SWITCH PIND&(1<<2) #define RIGHT_SWITCH PIND&(1<<3) #define SWITCH_EVENT PIND&((1<<3)|(1<<2)) #define CS 4 #define RC5_LED PB0
unsigned char readdata; unsigned int count; unsigned long int arg = 0; unsigned char mmc_buf[512]; unsigned char mmc_buf0[512]; unsigned char mmc_buf1[512]; unsigned int fat_start, dir_start, data_start; unsigned char sect_per_clust; volatile unsigned char BUF1_EMPTY, BUF0_EMPTY = 0; unsigned long int OCR1A_BACKUP; register int ISR_i asm("r2"); register char STEREO asm("r4"); register char TOGGLE_BUFFER asm("r5"); unsigned long int bitrate; unsigned int RC5_DATA; char RC5_FLAG; unsigned int OCR1A_ADJUST; unsigned int STARTING_CLUSTER;
void LCD_STROBE(void); void data(unsigned char); void cmd(unsigned char); void clear(void); void lcd_init(); void string(char *, char); void spi_init(); void spi_write(char); unsigned char spi_read(); void command(unsigned char, unsigned long int, unsigned char); char mmc_init(); void mmc_read_sector(unsigned long int); void fat16_init(); void print_num(unsigned long int, char); unsigned int scan_root_dir(unsigned char *,char [], char); void play_cluster(unsigned int); unsigned int find_next_cluster(unsigned int); void pwm_init(); void mmc_read_double_buffer(unsigned long int, unsigned char []); void timer1_init(); char check_bitrate_and_stereo(unsigned int); void INT2_init(); unsigned int forward_seconds(unsigned int); void pull_up_enable(); void init_RC5_valid_indicator_LED(); int main() { unsigned char fname[12]; unsigned int cluster; char NEXT_OR_PREVIOUS = 1;
_delay_ms(50); spi_init(); lcd_init(); pull_up_enable(); while(mmc_init()); pwm_init(); fat16_init(); timer1_init(); INT2_init(); init_RC5_valid_indicator_LED(); while(1) { while((cluster = scan_root_dir("WAV", fname, NEXT_OR_PREVIOUS)) == 0) { NEXT_OR_PREVIOUS = 1; } NEXT_OR_PREVIOUS = 1; LINE1; clear(); string(fname,1); if(!check_bitrate_and_stereo(cluster)) { TOGGLE_BUFFER = 0; BUF0_EMPTY = 1; ISR_i = 0; sei(); while(cluster != 0xffff) { play_cluster(cluster); cluster = find_next_cluster(cluster); if(SWITCH_EVENT) { if(RIGHT_SWITCH) {NEXT_OR_PREVIOUS = 1;break;}; if(LEFT_SWITCH) {NEXT_OR_PREVIOUS = 0; break;}; } if(RC5_FLAG) { RC5_FLAG = 0; if(RC5_DATA == 32) {NEXT_OR_PREVIOUS = 1;break;}; if(RC5_DATA == 33) {NEXT_OR_PREVIOUS = 0;break;}; if(RC5_DATA == 1) {OCR1A = (OCR1A_ADJUST += OCR1A_BACKUP/20);}; if(RC5_DATA == 3) {OCR1A = (OCR1A_ADJUST -= OCR1A_BACKUP/20);}; if(RC5_DATA == 2) {OCR1A = (OCR1A_ADJUST = OCR1A_BACKUP);}; if(RC5_DATA == 6) {cluster = forward_seconds(cluster);} if(RC5_DATA == 5) {cluster = STARTING_CLUSTER;} } } cli(); clear(); _delay_ms(100); } } return 0; }
unsigned int forward_seconds(unsigned int cluster) { cli(); unsigned long int clusters_to_forward; clusters_to_forward = ((bitrate / 512) * SECONDS_TO_FORWARD) / sect_per_clust; while(clusters_to_forward) { cluster = find_next_cluster(cluster); if(cluster == 0xffff) break; clusters_to_forward--; } sei(); return cluster; } void INT2_init() { DDRB &= ~(1<<PB2); GICR |=(1<<INT2); sei(); }
ISR (INT2_vect) { char i = 0; //TIMSK &= ~(1 << OCIE1A); RC5_DATA = 0; OCR1A = ((double)F_CPU/1000000)*1778; _delay_us(350); TCNT1 = 0; for(i = 0; i < 13; i++) { while(!(TIFR & (1 << OCF1A))); TIFR |= 1<<OCF1A; RC5_DATA <<= 1; if(PINB & (1<<PB2)) { _delay_us(10); if(PINB & (1<<PB2)) { _delay_us(10); if(PINB & (1<<PB2)) { RC5_DATA++; } } } } if((RC5_DATA & 0b1111101100000000) != 0b0000001100000000) { OCR1A = OCR1A_ADJUST; return; } PORTB |= (1<<RC5_LED); RC5_DATA &= 0b111111; RC5_FLAG = 1; OCR1A = OCR1A_ADJUST; TIMSK |= (1 << OCIE1A); _delay_ms(500); PORTB &= ~(1<<RC5_LED); GIFR |= (1<<INTF2); }
char check_bitrate_and_stereo(unsigned int cluster) { int i; mmc_read_sector(((unsigned long int)(cluster -2) * sect_per_clust) + data_start); if(mmc_buf[34] != 8) return 1; for (i = 31; i > 27; i--) { bitrate <<= 8; bitrate |= mmc_buf[i]; } STEREO = mmc_buf[22] - 1; print_num(bitrate,2); OCR1A_BACKUP = ((F_CPU *(STEREO + 1))/bitrate); OCR1A = OCR1A_ADJUST = OCR1A_BACKUP; return 0; }
unsigned int find_next_cluster(unsigned int cluster) { unsigned int cluster_index_in_buff = (2 * (cluster % 256)); mmc_read_sector(fat_start + cluster/256); return ((mmc_buf[cluster_index_in_buff + 1] << 8) + mmc_buf[cluster_index_in_buff]); }
void mmc_read_double_buffer(unsigned long int sector, unsigned char a[]) { int i; sector *= 512; command(17, sector, 0xff); while (spi_read() != 0); while (spi_read() != 0xfe); for(i = 0; i < 512; i++) a[i] = spi_read(); spi_write(0xff); spi_write(0xff); }
void play_cluster(unsigned int cluster) { unsigned long int sector; int i, j; sector = ((unsigned long int)(cluster -2) * sect_per_clust); sector += data_start; for(i = 0; i < sect_per_clust; i++) { while((!BUF1_EMPTY) && (!BUF0_EMPTY)); if(BUF0_EMPTY) { mmc_read_double_buffer(sector, mmc_buf0); BUF0_EMPTY = 0; } else if(BUF1_EMPTY) { mmc_read_double_buffer(sector, mmc_buf1); BUF1_EMPTY = 0;} sector += 1; } }
ISR (TIMER1_COMPA_vect) { if(STEREO) { if(TOGGLE_BUFFER == 1) { OCR0 = mmc_buf0[ISR_i++]; OCR2 = mmc_buf0[ISR_i++]; }else{ OCR0 = mmc_buf1[ISR_i++]; OCR2 = mmc_buf1[ISR_i++]; } if(ISR_i == 512) { if(TOGGLE_BUFFER) BUF0_EMPTY = 1; else BUF1_EMPTY = 1; TOGGLE_BUFFER ^= 1; ISR_i = 0; } } else { if(TOGGLE_BUFFER == 1) OCR0 = OCR2 = mmc_buf0[ISR_i++]; else OCR0 = OCR2 = mmc_buf1[ISR_i++]; if(ISR_i == 512) { if(TOGGLE_BUFFER) BUF0_EMPTY = 1; else BUF1_EMPTY = 1; TOGGLE_BUFFER ^= 1; ISR_i = 0; } } }
void timer1_init() { TCCR1B |= (1 << WGM12)|(1 << CS10); TCNT1 = 0; OCR1A = 10000; TIMSK |= (1 << OCIE1A); }
unsigned int scan_root_dir(unsigned char *FILE_EXTENSION, char FNAME[], char UP_DOWN) { while(1) { unsigned int i; static unsigned char read_end = 0; static int base_count = -32, sect_plus = 0; if(UP_DOWN == 1) { base_count += 32; if(base_count == 512) {base_count = 0; sect_plus += 1;}; } else { base_count -= 32; if(base_count == -32) {base_count = (512 - 32); sect_plus -= 1;} if(sect_plus < 0) {sect_plus = 0; base_count = 0;} } while(1) { mmc_read_sector(dir_start + sect_plus); while(base_count < 512) { if(mmc_buf[base_count] == 0) { read_end = 1; break;} if ((mmc_buf[1] != 0) && (mmc_buf[base_count + 2] != 0) && (mmc_buf[base_count] != 0xe5) && (mmc_buf[base_count] != 0x00) && ((mmc_buf[base_count + 11] & 0b00011110) == 0) && (strncmp(mmc_buf + base_count + 8, FILE_EXTENSION, 3) == 0)) { for(i = 0; i < 11; i++) FNAME = mmc_buf[base_count + i]; FNAME[11] = 0; return (STARTING_CLUSTER = (unsigned int)((mmc_buf[27 + base_count] << 8) + mmc_buf[26 + base_count])); } if(UP_DOWN) base_count += 32; else base_count -= 32; } base_count = 0; sect_plus++; if(read_end) { base_count = -32; sect_plus = 0; read_end = 0; return 0;} } } }
void print_num(unsigned long int i, char line) { char u = 0; unsigned char lcd_buf[16]; if(line == 1) cmd(0x80); else cmd(0xc0); while(i) { lcd_buf[u++] = (i % 10 + '0'); i /= 10; } while(u) data(lcd_buf[--u]); }
void fat16_init() //BOOT SECTOR SCANNING// { mmc_read_sector(0); clear(); LINE1; if((mmc_buf[0x36] == 'F') && (mmc_buf[0x39] == '1') && (mmc_buf[0x3a] == '6')) string("FAT16 DETECTED",1); else { string("NOT A FAT16",1); while(1); } _delay_ms(500); fat_start = mmc_buf[0x0e]; dir_start = (fat_start + (((mmc_buf[0x17] << 8) + mmc_buf[0x16]) * 2)); data_start = (dir_start + ((((mmc_buf[0x12] << 8) + (mmc_buf[0x11])) * 32) / 512)); sect_per_clust = mmc_buf[0x0d]; }
void mmc_read_sector(unsigned long int sector) { int i;
sector *= 512; command(17, sector, 0xff); while (spi_read() != 0); while (spi_read() != 0xfe); for(i = 0; i < 512; i++) mmc_buf = spi_read(); spi_write(0xff); spi_write(0xff); }
char mmc_init() { int u = 0;
PORTB |= 1<<CS; for (u = 0; u < 50; u++) { spi_write(0xff); } PORTB &= ~(1<<CS); _delay_ms(1); command(0, 0, 0x95); count = 0; while ((spi_read() != 1) && (count < 1000)) count++; if (count >= 1000) { string("CARD ERROR-CMD0 ",1); _delay_ms(500); return 1; } command(1, 0, 0xff); count = 0; while ((spi_read() != 0) && (count < 1000)) { command(1, 0, 0xff); count++; } if (count >= 1000) { string("CARD ERROR-CMD1 ",1); _delay_ms(500); return 1; } command(16, 512, 0xff); count = 0; while ((spi_read() != 0) && (count < 1000)) count++; if (count >= 1000) { string("CARD ERROR-CMD16",1); _delay_ms(500); return 1; } string("MMC INITIALIZED!",1); _delay_ms(500); SPCR &= ~(1<<SPR1); //increase SPI clock from f/32 to f/2 return 0; }
void command(unsigned char command, unsigned long int fourbyte_arg, unsigned char CRCbits) { spi_write(0xff); spi_write(0b01000000 | command); spi_write((unsigned char) (fourbyte_arg >> 24)); spi_write((unsigned char) (fourbyte_arg >> 16)); spi_write((unsigned char) (fourbyte_arg >> 8)); spi_write((unsigned char) fourbyte_arg); spi_write(CRCbits); spi_read(); }
unsigned char spi_read() { SPDR = 0xff; while(!(SPSR & (1<<SPIF))); return SPDR; }
void spi_write(char cData) { SPDR = cData; while(!(SPSR & (1<<SPIF))); }
void spi_init() { DDRB |= (1<<5)|(1<<7)|(1<<4); SPCR = (1<<SPE)|(1<<MSTR)|(1<<CPOL)|(1<<CPHA)|(1<<SPR1); SPSR = 1; }
void LCD_STROBE(void) { PORTD |= (1 << EN); _delay_us(1); PORTD &= ~(1 << EN); }
void data(unsigned char c) { PORTD |= (1 << RS); _delay_us(50); LCD_NIBBLE = (c >> 4); LCD_STROBE(); LCD_NIBBLE = (c); LCD_STROBE(); }
void cmd(unsigned char c) { PORTD &= ~(1 << RS); _delay_us(50); LCD_NIBBLE = (c >> 4); LCD_STROBE(); LCD_NIBBLE = (c); LCD_STROBE(); }
void clear(void) { cmd(0x01); _delay_ms(5); }
void lcd_init() { DDRC = 0x0f; DDRD |= (1 << RS)|(1 << EN); _delay_ms(15); cmd(0x30); _delay_ms(1); cmd(0x30); _delay_us(100); cmd(0x30); cmd(0x28); cmd(0x28); cmd(0x0c); clear(); cmd(0x6); }
void string(char *p, char line) { if(line == 1) LINE1; else LINE2; while(*p) data(*p++); }
void pwm_init() { TCCR0|=(1<<WGM00)|(1<<WGM01)|(1<<COM01)|(1<<CS00); TCCR2|=(1<<WGM20)|(1<<WGM21)|(1<<COM21)|(1<<CS20); DDRB|=(1<<PB3); DDRD|=(1<<PD7); }
void pull_up_enable() { PORTB |= (1<<PB2); } void init_RC5_valid_indicator_LED() { DDRB |= (1<<RC5_LED); } |
download source code + hex + asm + object + makefile from below link
repo
Screen shots:
Development tools:
I am using avr-gcc in linux.
We need avr-gcc, binutils-avr & avr-libc to be installed before trying to build the hex file. These are available via synaptic package manager.
Also, I am using avrdude package to burn the avr, hardware used is usbasp. So the makefile is made according to that... We can also use a simple parallel port burning circuit but in my case I don't have a parallel port in my lap, so I stick with the usbasp. It contains an atmega8 microcontroller programmed with the hex available at usbasp homepage.
here are the photos of my usbasp programmer, made according to the circuit diagram and firmware provided at the usbasp home page.
You could download the repo from the my bitbucket link.. (posted just below the source code).
How to make?
cd into the directory where the Makefile and c file is moved.
just need to type "make" to build the hex
How to burn it using usbasp?
Just need to type "sudo make burn_hex"
How to burn fuse bits?
Just need to type "sudo make burn_fuse"
How to clear the build?
Just need to type "make clean"
How to build & burn it without using Makefile?
?
1 2 3 4 | avr-gcc -mmcu=atmega32 -O2 main.c avr-objcopy -j .text -j .data -O ihex a.out a.hex sudo avrdude -c usbasp -p m32 -U flash:w:a.hex:i sudo avrdude -c usbasp -p m32 -U lfuse:w:0xef:m |
Finished......;-)
Fuse bits: LFUSE = 0b1110111
1
Không có nhận xét nào:
Đăng nhận xét